62template <
typename T,
size_t N>
76 for (
size_t i = 0;
i <
points.size(); ++
i)
86 std::array<T, N>
query;
87 for (
size_t d = 0;
d <
N; ++
d)
90 index.findNeighbors(
result_set,
query.data(), nanoflann::SearchParameters());
Definition dbscan_clustering.hpp:11
std::vector< Point< T, N > > random(size_t count, const std::array< std::pair< T, T >, N > &axis_ranges, std::optional< unsigned int > seed=std::nullopt)
Generates a specified number of uniformly distributed random points in N-dimensional space.
Definition random.hpp:66
T length_squared(const Point< T, N > &a)
Definition point.hpp:206
Point< T, N > normalized(const Point< T, N > &a)
Definition point.hpp:216
nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Simple_Adaptor< T, PointCloudAdaptor< T, N > >, PointCloudAdaptor< T, N >, N > KDTree
Definition nanoflann_adaptator.hpp:35
void relaxation_ktree(std::vector< Point< T, N > > &points, size_t k_neighbors=8, T step_size=T(0.1), size_t iterations=10)
Relax a point set using a k-nearest neighbor repulsion algorithm with a KD-tree.
Definition relaxation.hpp:63
Definition nanoflann_adaptator.hpp:13
A fixed-size N-dimensional point/vector class.
Definition point.hpp:39