37template <
typename T,
size_t N>
52 for (
size_t i = 0;
i <
points.size(); ++
i)
69 std::array<T, N>
query;
70 for (
size_t d = 0;
d <
N; ++
d)
73 std::vector<nanoflann::ResultItem<unsigned int, T>>
ret_matches;
74 nanoflann::SearchParameters
params;
75 index.radiusSearch(
query.data(),
Definition dbscan_clustering.hpp:11
std::vector< Point< T, N > > random(size_t count, const std::array< std::pair< T, T >, N > &axis_ranges, std::optional< unsigned int > seed=std::nullopt)
Generates a specified number of uniformly distributed random points in N-dimensional space.
Definition random.hpp:66
std::vector< int > percolation_clustering(const std::vector< Point< T, N > > &points, T connection_radius)
Analyze percolation clusters from a set of points using a radius-based neighbor graph.
Definition percolation_clustering.hpp:38
nanoflann::KDTreeSingleIndexAdaptor< nanoflann::L2_Simple_Adaptor< T, PointCloudAdaptor< T, N > >, PointCloudAdaptor< T, N >, N > KDTree
Definition nanoflann_adaptator.hpp:35
Definition nanoflann_adaptator.hpp:13
A fixed-size N-dimensional point/vector class.
Definition point.hpp:39